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We present an investigation of the structural and magnetic correlations during the remagnetization process of
a gradient nanocrystalline multilayer with uniform uniaxial magnetic anisotropy by specular reflectometry and
off-specular scattering of polarized neutrons with polarization analysis. The scattering data were analyzed
within the distorted wave Born approximation �DWBA� including interfacial roughness correlations and lateral
correlations of the spin misalignment. The magnetization reversal proceeds sequentially from the bottommost
and thinnest ferromagnetic layers to the topmost and thickest ones. It is quantitatively explained within the
random anisotropy model including dominant uniform uniaxial anisotropy. Two types of lateral spin misalign-
ment were deduced, random and not random: The first one in all layers due to the random orientation of the
grains, the second one in the layers with nonreversed magnetizations only and due to the applied field acting
against the uniaxial anisotropy.
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I. INTRODUCTION

Over the past 20 years, the ability to build magnetic ma-
terials nanostructured along one dimension has led to a par-
ticularly interesting class of materials for both scientific and
technological applications. Studies on subjects such as inter-
layer exchange coupling, giant magnetoresistance, colossal
magnetoresistance, tunnel magnetoresistance, current-
induced magnetization switching,1 or exchange bias2 have
led to the exciting possibility of utilizing electron spin for
information processing.

The development of lithography3,4 and self-organization5,6

techniques has driven the research on samples nanostruc-
tured along several dimensions, such as “nanostripes” or
“nanodots.” Fundamentally, novel properties can be expected
if the size of the structures becomes comparable to or smaller
than certain characteristic length scales, such as the spin dif-
fusion length, charge carrier mean free path, ferromagnetic
exchange length, or Fermi wavelength.3,7 For example, mag-
netization reversal processes can be modified drastically in
magnetic structures confined to sizes that preclude the do-
main wall formation. Also, the proximity of nanoelements
can interfere with the spin diffusion length, a quantity that
determines long range order phenomena in itinerant magne-
tism.

From the point of view of applications, magnetic nano-
structures are the critical building blocks of important mag-
netoelectronics devices, such as the magnetic random access
memory or patterned recording media. Due to the necessary
miniaturization of such devices and the proximity of the su-
perparamagnetic limit,8 the magnetic interaction between the
neighboring cells9 is becoming a more and more important
parameter that has to be understood and, hitherto, controlled.
Also, it has recently been shown that the dilution of a small
amount of magnetic transition metal atoms in a semiconduc-
tor matrix can lead to the self organization of well ordered,
transition metal rich, magnetic nanocrystals.10,11 A strong
magnetostatic or carrier-mediated coupling between the

nanocrystals is expected, which could explain the high Curie
temperature and strong magnetoresistance in certain diluted
ferromagnetic semiconductors.

Specular reflection of polarized neutrons has been shown
to be a method of choice for the quantitative, depth-resolved
determination of the amplitudes and directions of the mag-
netizations in magnetic multilayers, leading to precious in-
formations, for example on multilayers with interlayer ex-
change coupling,12,13 on exchange bias systems,14–16 on
exchange spring magnets,17 on the magnetism of the inter-
face between a ferromagnet and a superconductor,18,19 or on
dipolarly coupled magnetic multilayers.20 In the specular re-
flection geometry the wave vector transfer Q of the radiation
is perpendicular to the sample surface and only laterally av-
eraged informations can be deduced.

In the off-specular geometry, Q has one or two of its
components lying in the sample plane, which allows to probe
lateral correlations of the magnetization fluctuations on
length scales ranging from several tens of �m21–25 down to
the nm range.26 Neutron scattering under grazing incidence
with polarization analysis is a method of choice to determine
lateral fluctuations in direction and modulus of the magneti-
zation vector in devices relevant for magnetoelectronics,
making it a unique probe, even compared to the powerful
techniques of magnetic force microscopy, photoemission
electron microscopy, and resonant x-ray magnetic scattering
or dichroism, as a depth information is available, which is
not the case for the other methods mentioned.

Although the cross section of specular reflection of polar-
ized neutrons has been modeled quite quickly after the first
observations,27–29 the cross section for grazing incidence
scattering of polarized neutrons with polarization analysis
has received only recently a full derivation.30,31 At grazing
incidence, the lengths obtained by projecting the coherence
volume of the neutron beam on the sample surface may be-
come rather large �up to the mm range� but usually remain
smaller than the sample surface and therefore have to be
compared with the lengths of lateral correlations present in
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the sample. This can have important consequences for the
interpretation and simulation of specular reflectivity20 and
off-specular scattering,13,32,33 as explained in Sec. II A. At
grazing incidence, the measured off-specular scattering can
also be affected strongly by dynamical effects such as refrac-
tion and total external reflection. Those phenomena, inher-
ently dependent upon multiple scattering, are not reproduced
by simulations within the Born approximation. In that case,
the theoretical description has to be performed in the frame-
work of the distorted wave Born approximation �DWBA�.

To the authors knowledge, reflectivity and off-specular
scattering of polarized neutrons with polarization analysis,
coupled with state-of-the-art data analysis, is the only
method that quantitatively and in a nonperturbing way al-
lows depth-resolved investigations of the magnetizations and
of the correlations between their in-plane fluctuations in bur-
ied layers.

In this paper, we show reflectivity and off-specular scat-
tering of polarized neutrons and polarization analysis from
an FeCoV /TiN remanent neutron polarizing supermirror.34 A
polarizing supermirror is a ferromagnetic/nonmagnetic
multibilayer system with a gradient in the bilayer thick-
nesses. It is used for the polarization of cold and thermal
neutron beams. Our interest in this system lies in the nanoc-
rystallinity of the ferromagnetic layers with randomly ori-
ented grains that are exchange coupled with their neighbors
and that have sizes smaller than the ferromagnetic exchange
length, leading to reduced coercivity of the ferromagnetic
layers.35 Moreover, a well defined uniaxial magnetic aniso-
tropy has been induced in this system, coherent over the
whole surface of the sample.36 All this, together with the
high saturation magnetization of the ferromagnetic layers
makes FeCoV an excellent candidate for high-frequency thin
film read-head material.37,38 In this supermirror, the lateral
grain size increases with the layer thickness,39 leading to an
increase of the coercive field from the thinnest to the thickest
layers.34 The issue here is to figure out whether the evolution
of the lateral grain size reflects itself in an evolution of the
layer magnetization reversal mechanism and/or of the lateral
magnetic correlations.

The paper is organized as follows. In Sec. II we describe
the experimental geometry and sketch the results of the cal-
culation of neutron specular reflectivity and scattering under
grazing incidence with polarization analysis. We also de-
scribe the structure factors for the two types of fluctuations
encountered here, namely bulk lateral magnetic fluctuations
and interfacial structural roughnesses. The principle of a
remanent polarizing supermirror is presented in Sec. III, the
experimental apparatus and the data analysis procedure in
Sec. IV. In Sec. V, the measurements on the supermirror are
presented together with their analysis, including the specular
reflectivity and the off-specular scattering. From the specular
reflectivity, we deduce that the magnetization reversal pro-
ceeds sequentially from the bottommost and thinnest FeCoV
layers to the topmost and thickest ones, we conclude on the
presence of magnetically dead layers at both FeCoV /TiN
and TiN /FeCoV interfaces, and deduce that the interfacial
roughness increases from the bottom-most to the topmost
interface in a nonlinear way. Those results are in agreement
with other studies on the same system. The off-specular scat-

tering is strongly spin polarized and its origin can be sepa-
rated into interfacial roughness with strong cross-correlations
between interfaces and lateral correlations of the spin mis-
alignment without any cross-correlations between the layers.
Two types of lateral spin misalignments are deduced, random
and not random, the first one being due to the random orien-
tation of the grains, the second one due to the uniform
uniaxial anisotropy. The results are discussed in Sec. VI. We
quantitatively correlate the coercivity of the different FeCoV
layers to their grain size changing with their thickness in the
framework of the random anisotropy model �RAM� with
dominant uniaxial anisotropy. We also discuss why we did
not deduce any dependence of the lateral correlation length
of the spin misalignment with grain size, in disagreement
with the RAM. Finally, some concluding remarks and an
outlook are given in Sec. VII.

II. NEUTRON REFLECTIVITY AND SCATTERING
UNDER GRAZING INCIDENCE WITH POLARIZATION

ANALYSIS

A. Spatial coherence of the beam

The measurement geometry is depicted in Fig. 1. Neu-
trons impinge on the sample surface with wave vector ki
under the grazing angle of incidence �i and are detected with
outgoing wave vector k f whose direction is defined by the
angles � f and � in planes, respectively parallel and perpen-
dicular to the plane of incidence defined by ki and the normal
to the sample surface. We will restrict our discussion to elas-
tic scattering, i.e., ki=kf =k=2� /�, where � is the neutron
wavelength.

In the present experimental geometry, the collimation of
the beam is defined by two slits parallel to the y axis. In that
case, the detected signal is integrated over �, scattering can
be discriminated from the specular reflex along the off-
specular line, and lateral correlations are probed along the x
direction. Therefore, if Q=k f −ki and Q� = �Qx ,Qy� are the
wave vector transfer and its projection on the sample plane
respectively, then Qx is resolved and Qy is not.

An important quantity to consider in the interpretation and
simulation of �specular� reflectivity and scattering under
grazing incidence is the coherence volume of the neutron
beam, because its projection Scoh along the sample plane is
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FIG. 1. �Color� Measurement geometry. On a reflectometer, like
HADAS, the collimation of the beam is defined by two slits parallel
to the y axis. In that case, the measured intensities are not resolved
but integrated along the � direction.

KENTZINGER et al. PHYSICAL REVIEW B 77, 104435 �2008�

104435-2



usually much smaller than the �illuminated part of the�
sample surface. Scoh= lx · ly is related to the resolutions in the
in-plane components of the momentum transfer �lx
�2� /�Qx, ly �2� /�Qy�. It depends on several factors such
as the wavelength resolution, the beam collimation and the
angles �i, � f, and �. In the present experimental geometry lx
ranges typically from several �m to several mm and, as �Qy
is relaxed, ly is relatively small �several nm�. To be consis-
tent, the projection l� of the coherence volume of the beam
on the axis perpendicular to the sample surface has also to be
considered. It is related to the component of Q perpendicular
to the sample surface �l��2� /�Q��which can reach tens of
�m. Neutron waves scattered from objects separated in the
z-direction by distances smaller than l� still interfere. In the
case of supermirrors consisting of a stack of many layers
resulting in a relatively large total thickness, special care has
to be taken. In the case of the supermirror considered here,
the total thickness is of the order of 1.5 �m. The reflectivity
and diffuse scattering data were very well reproduced at all
�i and � f angles by the simulations, assuming coherence
over the whole penetration depth of the neutrons.

If, within the lateral coherence surface Scoh, the sample
can be considered as homogeneous and flat, then no lateral
momentum can be transferred, and intensity is seen only in
the specular direction defined by Q� =0 with an accuracy
given by �Q�. The measured reflectivity is an average over
the different reflectivities from the different surfaces of co-
herence of the sample for which the homogeneous and flat
approximation holds. If, on the contrary, the invariance of the
system with respect to a lateral shift smaller than lx or ly is
violated, lateral momentum transfer can occur and some in-
tensity can be detected off-specular, i.e., at Q��0. The mea-
sured scattering cross section is an average over the different
scattering cross sections from the different coherence sur-
faces of the sample.

Usually, when spanning a whole range of �i and � f val-
ues, the off-specular signal ��i�� f� coexists with specular
reflectivity ��i=� f�. Specular reflectivity originates from the
depth variation of the laterally averaged interaction potential
between neutron and matter and off-specular scattering from
the fluctuations around this mean value.

Note that a signal of scattering nature can be measured at
the specular position. For a good interpretation of the mea-
sured data it is therefore important to measure both specular
and off-specular signals.13,32,33

B. Specular reflectivity

In this section the calculation of the specular reflectivity
with polarization analysis is presented within the recursion
formalism of Parratt.40 We will also present how the ineffi-
ciencies of the polarizer and the analyzer as well as interfa-
cial roughness are taken into account.

We assume that the sample is laterally homogeneous and
flat, the neutron-matter interaction potential having a varia-
tion only along the depth of the sample. We subdivide the
system in layers such that, in each layer, the neutron-matter
interaction is a constant. The interaction potential operator in

layer l can be separated into two parts, i.e., V̂l=Vl
N1̂+ V̂l

M,

where Vl
N is the neutron-nucleus interaction potential and

V̂l
M =−�n�̂Bl is the magnetic dipole interaction operator be-

tween the neutron magnetic moment operator �n�̂ and the
magnetic induction Bl. �̂ is the vector of Pauli matrices,
�n=	�N where �N is the nuclear magneton and 	=−1.91 is
the neutron gyromagnetic factor. The interaction potential

operator can be written as V̂l=2�
2 /m��l
N1̂+�l

M�̂bl� where
�l

N and �l
M are the nuclear and magnetic scattering length

densities, respectively, and bl is the unit vector oriented
along Bl. bl provides a quantization axis for the neutron spin.
The two eigenvectors �+ � and �−� of the operator �̂bl with
eigenvalues +1 or −1 define states of the neutron with “+” or
“−” spin projection along the quantization axis. The neutron
wave function, solution of the Schrödinger equation in coor-

dinates and spin space for the potential V̂l and for an incom-
ing plane wave with wave vector ki and angle of incidence �i
is a linear combination of those two eigenstates. Inside each
layer l, it can be written in the following way:

��il�ki,r�� = ei
ir · Ŝil�z� · ��i0�ki,0�� , �1�

where �i is the in-plane �conserving� component of ki and Ŝil
the propagation operator inside layer l:

Ŝil�z� = eip̂il�z−zl−1�t̂il + e−ip̂il�z−zl−1�r̂il, �2�

where zl−1 is the height of the interface between layers l−1
and l. z=0 is the interface with vacuum �l=0� and z is
counted positive towards the substrate. t̂il and r̂il are the am-
plitude operators in spin space of the reflected and transmit-
ted waves in layer l.

The component of the incident wave vector in layer l
perpendicular to the sample surface, operator in spin space,

is given by p̂il=�pi0
2 1̂− p̂c,l

2 where pi0=ki sin��i� is the com-
ponent of ki in vacuum perpendicular to the sample surface.
The eigenvalues �4���l

N+�l
M� and �4���l

N−�l
M� of the

operator p̂c,l=�4���l
N1̂+�l

M�̂bl� are the critical values of pi0
for total external reflection of spin “+” and spin “−” neu-
trons, respectively, at an interface between vacuum and a
very thick layer of type l, i.e., a layer of nuclear scattering
length density �l

N, magnetic scattering length density �l
M, and

magnetic field orientation bl. p̂il is diagonal when the quan-
tization axis is taken along bl with the eigenvalues pil

�

=�pi0
2 −4���l

N��l
M�. Like any function of a linear combina-

tion of the unit matrix and the Pauli matrices, p̂il can be
written as another linear combination of the unit matrix and
the Pauli matrices41,42:

p̂il =
1

2
��pil

+ + pil
−�1̂ + �pil

+ − pil
−��̂bl	 . �3�

Solving the Schrödinger equation in each layer l, and tak-
ing into account the continuity relations at the interfaces of
the wave function and its first derivative perpendicular to the

sample surface, the ratio X̂il= r̂ilt̂il
−1 of the amplitude operators

of the reflected and transmitted waves in layer l can be cal-
culated based on the recursion formalism of Parratt.31,40,43,44

X̂il is given by
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X̂il = eip̂ildl��1̂ − p̂il
−1p̂il+1� + �1̂ + p̂il

−1p̂il+1�X̂il+1	

� ��1̂ + p̂il
−1p̂il+1� + �1̂ − p̂il

−1p̂il+1�X̂il+1	−1eip̂ildl, �4�

where dl is the thickness of layer l.
The measured reflectivity R is deduced from the reflec-

tance matrix R̂= r̂i0, i.e., the amplitude operator of the re-
flected wave in vacuum, if the amplitude operator of the

impinging neutron wave is set to t̂i0= 1̂ and a semi-infinite

substrate is assumed �r̂iN+1= 0̂�. The reflectance matrix trans-
forms the spin components of the incoming neutron wave
into the spin components of the reflected wave. The mea-
sured reflectivity is the modulus squared of the matrix ele-

ment of R̂ between the bra and the ket representing the in-
coming and reflected waves, respectively, averaged over all
the states prepared by the polarizer and accepted by the ana-
lyzer. Let Pi be the vector in coordinate space defining the
spin-polarization �in magnitude and direction� of the incom-
ing beam prepared by the polarizing device and P f the cor-
responding vector characterizing the analyzer device.42

When the incoming beam is prepared in a pure state, i.e.,
with all neutrons having the same spin projection along the
quantization axis defined by the guide field, then �Pi � =1.
When the pure state is the �+ � ��−�� state the component of Pi
along that axis is equal to +1 �−1�. In general, the polarizing
device is not perfect and �Pi � �1. The same argumentation
holds for P f. The measured reflectivity then writes31,44

R = 
Tr��̂ fR̂�̂iR̂
+�� , �5�

where the density matrices41,42 �̂i and �̂ f of the polarizer and
the analyzer are deduced from the polarization vectors

through the relation �̂i,f =
1
2 �1̂+Pi,f�̂�. The bracket 
·� in the

above equation stands for an average over all the coherence
volumes probed by the beam �cf. Sec. II A�.

Structural roughness between layer l and l+1 is taken into
account by assuming a Gaussian height distribution function
of the interfaces of root-mean-squared width bounded to �l.
Structural roughness alone does not produce any additional
spin-flip process. Therefore, and following Nevot and Croce
result45–47 who found that the Fresnel reflection coefficient
had to be corrected by a damping term, we use Eq. �5� again,

substituting the operator �1̂− p̂il
−1p̂il+1� appearing two times in

Eq. �4� by the operator �1̂− p̂il
−1p̂il+1�e�−2�l

2p̂il
Rp̂il+1

R �, where p̂il
R

has the same functional form as p̂il but is now a function of
�̂bl

R, where bl
R is the projection of bl along the incoming

polarization vector: bl
R= �Pi ·bl� ·Pi / �Pi�2.

C. Scattering cross section within the DWBA

If fluctuations of the height of interfaces, of the nuclear
scattering length densities, or of the magnetic fields in the
layers exist with correlations on length scales smaller than lx,
then off-specular scattering can be observed. In the grazing
incidence geometry, the scattering can be strongly affected
by dynamical effects such as refraction and total external
reflection. For example, one can observe an enhancement of
the off-specular scattering at �i and � f angles close to the

critical angle of total reflection, the so-called Yoneda
wings.48 In that range of angles, formulating the scattering
cross section within the Born approximation fails in repro-
ducing the measured data. The DWBA is used when the
Hamiltonian can be decomposed into the sum of a reference
Hamiltonian that can be solved exactly, plus a residual po-
tential that can be regarded as a perturbation. In the form of
the DWBA introduced by Vineyard49 and Sinha et al.47 and
later on by Pynn50 and Holy et al.51,52 for reflectivity and
off-specular scattering from rough interfaces, the reference
Hamiltonian corresponds to the system with flat interfaces
leading to specular reflection �see Sec. II B�. In the case of
multilayers with micromagnetic fluctuations like, e.g., mag-
netic domains, the reference Hamiltonian inside each layer
consists in the lateral average over the magnetization direc-
tions.

We give here the cross section in the case where the fluc-
tuations are not interface ones, but bulk density fluctuations
within the layers separated by flat interfaces. This is, for
example, the case of magnetic domains with straight and
vertical domain walls. This does not restrict the generality of
the physics involved but the equations obtained are less
lengthy than in the interface case.47,51–53 In Sec. II E the re-
sult in the small roughness amplitude approximation, ex-
tended to the scattering of polarized neutrons, is presented.

In the case of bulk density fluctuations, the interaction
potential within each layer l has a dependence only along the
lateral coordinate � within the plane of the layers and the
decomposition of the potential takes the following form:

V̂l��� = V̂l + V̂l��� , �6�

where V̂l is the reference potential and V̂l��� is the residual

one treated as a perturbation such that 
V̂l��=0, where 
·��

stands for the average over the lateral coordinate � �i.e., over
the sample surface�. This decomposition is schematically
represented in Fig. 2. The reference potential gives rise to the
specular reflectivity and is written like in the preceding sub-
section and the residual one leads to scattering and writes

V̂l���=2�
2 /m��̃l
N��� · 1̂+ �̃l

M��� · �̂b̃l	, where �̃l
N��� de-

scribes the lateral nuclear scattering length density fluctua-
tions in layer l, �̃l

M��� describes the lateral magnetic scatter-

ing length density fluctuations, and the unit vector b̃l the

FIG. 2. Decomposition of the potential V̂l��� in layer l, within

the DWBA. V̂l���= V̂l+ V̂l���, where V̂l is the reference potential

leading to specular reflectivity and V̂l��� is the residual one leading

to off-specular scattering. V̂l is constant inside layer l and V̂l��� is
fluctuating laterally. ki �k f� is the wave vector of the incident �out-
going� plane wave outside the sample.
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direction along which the magnetic field fluctuations in layer
l are oriented.

Within a coherence volume of the beam, the scattering
amplitude of neutrons incident with wave vector ki=�i
+ pi0 ·ez and detected with wave vector k f =� f + pf0 ·ez ��i and
� f being the components of the wave vectors in the film
plane� then writes30,31

F�k f,ki� = −
m

2�
2�
l
� dr
� fl�k f,r��V̂l�����il�ki,r�� ,

�7�

where the bra and the ket in that equation are solutions of the
Schrödinger equation for the reference potential inside layer
l. The integral sign represents an integration over the inter-
section of the considered beam coherence volume and the
volume of layer l. This scattering amplitude looks very much
like a scattering amplitude within the Born approximation.
However, contrarily to the Born approximation in which the
potential is taken between a bra and a ket describing plane
waves far before and far after interaction with the sample the
grazing incidence scattering amplitude within the DWBA is
obtained by taking the residual potential between a bra and a
ket that describe waves that are distorted by the reference
potential. It describes the process of an incident plane wave
impinging on the sample surface, that is distorted by the
reference potential into the sample, then scattered by a fluc-
tuation into another solution of the Schrödinger equation for
the reference potential, and leaving the sample in the form of
another plane wave. The strong dynamical effects observed
at �i or � f close to a critical angle of total reflection are
explicitly taken into account in the bra and the ket within the
formalism of reflectance and transmittance described in Sec.
II B. Note also that in the case of a multi-bilayer or a super-
mirror for which the reflection coefficients at the multilayer
Bragg positions can have large values, the scattering cross
section calculated within the DWBA differs substantially
from the one calculated within the Born approximation.

Also, the bra and the ket in Eq. �7� assume different
asymptotic conditions. The ket assumes an incident plane
wave that approaches the sample from the source of radia-
tion, whereas the bra assumes an incident plane wave that
approaches the sample from the side of the detector. Within
each layer l the reference potential is constant, i.e., it does
not depend on r. The ket in layer l then writes

��il�ki,r�� = ei�i� · Ŝil�z� · ��i0�ki,0�� �8�

with the propagator in layer l:

Ŝil�z� = eip̂il�z−zl−1�t̂il + e−ip̂il�z−zl−1�r̂il �9�

and the bra writes


� fl�k f,r�� = 
� f0�k f,0�� · Ŝfl�z� · e−i�f�, �10�

where � f is the in-plane �conserving� component of k f and
with the associated propagator:

Ŝfl�z� = t̂ f le
ip̂fl�z−zl−1� + r̂ fle

−ip̂fl�z−zl−1�. �11�

The reflection r̂il and transmission t̂il amplitude operators
used to build the propagator for the ket in Eq. �8� can be
calculated from Eq. �4�. The reflection r̂ fl and transmission t̂ f l
amplitude operators in layer l used to build the propagator
for the bra in Eq. �10� can be deduced in a similar manner as
in the preceding subsection, by writing the continuity rela-

tions at the interfaces. p̂fl=�pf0
2 1̂− p̂c,l

2 is the component of
the scattered wave vector in layer l perpendicular to the
sample surface, with pf0=kf sin�� f� the component of k f in
vacuum perpendicular to the sample surface. The eigenval-
uespfl

� of p̂fl have the same functional form as the ones of p̂il
in the previous subsection, and p̂fl can also be written as a
linear combination of the unit matrix and the Pauli matrices
as for p̂il in Eq. �3�.

The scattering amplitude can therefore be rewritten in the
following way:

F�k f,ki� = 
� f0�k f,0��F̂fi��i0�ki,0�� �12�

with the scattering amplitude operator:

F̂fi = �
l
� dzŜfl�z� · F̂l�Q�� · Ŝil�z� �13�

and the lateral Fourier transform of the residual potential:

F̂l�Q�� = −
m

2�
2 � d� e−iQ�·�V̂l���, Q� = � f − �i.

�14�

The integral signs in Eqs. �13� and �14� represent an integra-
tion over the height of layer l and an integration over the
intersection of the considered beam coherence volume and
the surface of the sample, respectively. Therefore, similarly
to the calculation of the scattering amplitude within the Born
approximation, the calculation of the scattering amplitude
within the DWBA includes the lateral Fourier transform of
the residual potential. The other terms entering in Eq. �13�
depend only on the reference potential and not on the fluc-
tuations.

Inserting formulas �9� and �11� for the propagation opera-
tors into Eq. �13�, the scattering amplitude operator can be
rewritten in the following way:

F̂fi = �
l

�t̂ f lF̂fil
tt t̂il + t̂ f lF̂fil

tr r̂il + r̂ flF̂fil
rt t̂il + r̂ flF̂fil

rr r̂il� . �15�

The terms on the right-hand side of Eq. �15� have a clear
physical meaning; they describe several processes contribut-

ing to the scattered wave. For instance, the term t̂ f lF̂fil
tt t̂il de-

scribes the scattering from the transmitted wave in layer l
with amplitude t̂il into the transmitted wave with amplitude

t̂ f l. Similarly, the process corresponding to the term t̂ f lF̂fil
tr r̂il

is a scattering from the reflected wave in layer l with ampli-
tude r̂il into the transmitted wave with amplitude t̂ f l. The
physical meaning of the two other terms is similar.

The exponential operators entering in the formula for the
propagators in Eqs. �9� and �11� are functions of linear com-
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binations of the Pauli matrices and the unit matrices. There-
fore, in the same way as in the previous subsection for the
operator component of the wave vector perpendicular to the
sample surface �Eq. �3�	, they can be decomposed into other
linear combinations of the Pauli matrices and the unit matrix.
For example, for the first exponential operator in Eq. �9�, one
has

eip̂il�z−zl−1� =
1

2
��eipil

+�z−zl−1� + eipil
−�z−zl−1��1̂

+ �eipil
+�z−zl−1� − eipil

−�z−zl−1���̂bl	 . �16�

Inserting those decompositions into the propagators and per-
forming the integration over z in Eq. �13�, the partial scatter-

ing amplitude operators F̂fil
�� �� ,�= t or r� write

F̂fil
�� =

1

4�
��

gfil
�����1 + � · �̂bl�F̂l�Q���1 + � · �̂bl� , �17�

where �=�, �=� represent the spin projections of the in-
cident and final neutron waves along a quantization axis,
respectively. The Laue functions gfil

���� are obtained from the
integration over the layer thickness dl:

gfil
���� =

exp�iqfil
����dl� − 1

iqfil
���� �18�

with qfil
���� the wave vector transfers perpendicular to the

film surface when only the reference Hamiltonian is consid-
ered: qfil

tt��= pfl
� + pil

�, qfil
tr��= pfl

� − pil
�, qfil

rt��=−pfl
� + pil

�, and qfil
rr��

=−pfl
� − pil

�.
The Laue functions gfil

tt�� describe the different spin-flip
and non-spin-flip processes that can occur in layer l when the
transmitted wave with amplitude t̂il is scattered into the
transmitted wave with amplitude t̂ f l. gfil

tt++ and gfil
tt−− corre-

spond to non-spin-flip processes and show sharp maxima at
pfl

+ + pil
+ =0 and pfl

− + pil
− =0, respectively. The Laue functions

gfil
tt+− and gfil

tt−+ correspond to spin-flip processes and show
sharp maxima at pfl

+ + pil
− =0 and pfl

− + pil
+ =0, respectively. The

physical meaning of the other Laue functions is similar.

Therefore, inside each layer l, F̂fi decomposes into 4�4
terms, representing the sixteen types of scattering process
that can occur.

After having discussed the Laue functions gfil
����, we now

focus on the term F̂l�Q�� in Eq. �17�, which is the lateral
Fourier transform of the fluctuations in layer l. It decom-
poses into

F̂l�Q�� = �l
N1̂Fl

N�Q�� + �l
M�̂b̃l�Fl

M�Q�� , �19�

where

Fl
N�Q�� = −

m

2�
2 � d� e−iQ���̃l
N���/�l

N,

Fl
M�Q�� = −

m

2�
2 � d� e−iQ���̃l
M���/�l

M �20�

are the lateral Fourier transforms of the nuclear and magnetic
scattering length density fluctuations �relative to their later-

ally averaged counterparts�, respectively, and b̃l� is the

component of b̃l perpendicular to Q. In other words, b̃l� is
the Halpern-Johnson vector for magnetic scattering of

neutrons54,55 defined by b̃l�= b̃l− �b̃l ·Q̂� ·Q̂, where Q̂ is the
unit vector parallel to Q.

Finally, the scattering cross section is obtained by taking
the modulus squared of the scattering amplitude in Eq. �12�.
The result has also to be averaged over the different states
��i0�ki ,0�� and 
� f0�k f ,0�� prepared by the polarizer and ac-
cepted by the analyzer. In the same way as for the specular
reflectivity, the scattering cross section can therefore be writ-
ten

d�

d�
�pi0,pf0,Q�� = 
Tr��̂ fF̂fi�̂iF̂fi

+ �� , �21�

where the added bracket sign 
·� stands for a sum over all the
coherence surfaces illuminated by the beam.

By inserting Eq. �19� into Eqs. �17�, �15�, and �21�,
one can show that the total cross section can be decom-
posed into several parts, involving terms of the type

Fl
N�Q�� ·Fl�

N*�Q��, ��̂b̃l��Fl
M�Q�� · ��̂b̃l���Fl�

M*�Q��, and

Fl
N�Q�� · ��̂b̃l���Fl�

M*�Q��, products of two Fourier transforms
of the lateral fluctuations, and therefore equal to the Fourier
transforms of the lateral pair correlations between the
nuclear-nuclear, magnetic-magnetic and nuclear-magnetic
density fluctuations respectively. Therefore, similarly to the
Born approximation, the calculation of the scattering cross
section within the DWBA can be reduced to the modeling of
pair correlation functions of the fluctuations. The other terms
are independent of the fluctuations and depend only on the
reference potential. They influence drastically the scattering
cross section at angles �i and � f close to total reflection or at
angles for which the average multilayer structure �i.e., the
reference potential� induces strong Bragg peaks.

D. Application to bulk lateral correlations of the spin
misalignment

In order to describe the measured data, we assume a
model with the mean magnetizations either parallel or anti-
parallel to the external field �0H applied along the y axis of
Fig. 1. We also take this axis as the quantization axis of the
neutron spin. Lateral correlations in layer l are described by
neighboring regions of constant magnetization with the
modulus equal to the saturation magnetization, of average
size 2�l

M, in which the spins are misaligned with respect to
the applied field �0H, making alternatively angles �l and −�l
with respect to the field axis. �l is not constant over the
whole surface of the sample; it varies randomly from region
to region around a mean value �l with a Gaussian distribu-
tion of rms width equal to �l. A schematic representation of
the model is given in Fig. 3. Note that random fluctuations of
the spin misalignment were already introduced in order to
describe small angle scattering data from soft nanocrystalline
bulk ferromagnets.56–58

The average magnetic scattering length density in layer l,
leading to non-spin-flip specular reflectivity is given by �l

M
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=�l
Msat cos��l� where �l

Msat is the magnetic scattering length
density in layer l at magnetic saturation. Two types of scat-
tering processes are expected. If �l is not equal to 0° or
180°, then lateral fluctuations of the x component of the
magnetization �transverse fluctuations� are expected, which
lead to spin-flip off-specular scattering, as those fluctuations
are oriented perpendicular to the quantization axis of the

neutrons �b̃l��0H�. If �l is not equal to zero, the y compo-
nent of the magnetizations will also fluctuate �longitudinal
fluctuations�, leading to non-spin-flip scattering, as those
fluctuations are oriented parallel to the quantization axis

�b̃l ��0H�.
Considering homogeneous boxes of lateral size 2�l

M in
layer l, smaller than the lateral coherence length of the beam,
the Fourier transforms of the pair correlation functions
exFl

M�Q�� ·exFl�
M*�Q�� and eyFl

M�Q�� ·eyFl�
M*�Q�� for trans-

verse and longitudinal fluctuations, respectively, can be
calculated.59 After summation over the surfaces of coherence
and integration over the y-component Qy of Q which is not
resolved in this experiment, they become


exFl
M · exFl�

M*�y�Qx�

=
N0 · Scoh · Sll�

M

2
· 
 �l

M

1 + �Qx · �l
M�2 +

�l�
M

1 + �Qx · �l�
M�2� ,


eyFl
M · eyFl�

M*�y�Qx�

=
N0 · Scoh · Cll�

M

2
· 
 �l

M

1 + �Qx · �l
M�2 +

�l�
M

1 + �Qx · �l�
M�2� ,

�22�

where Scoh is the surface of coherent illumination by the
beam and N0 is the number of such surfaces that cover the
whole illuminated area. The Fourier transforms of the
pair correlation functions have a Lorentzian shape in
Qx. Sll�

M = 
sin��l� · sin��l��� and Cll�
M = 
cos��l� · cos��l���

− 
cos��l��2�ll� are given by the amplitudes of fluctuation of
the magnetizations perpendicular and parallel to the
field axis, respectively. It can easily be shown that

Sll
M = 1

2 �1−cos�2�l� ·e−2�l
2
	 and Cll

M = 1
2 �1−cos�2�l� ·e−�l

2
	�1

−e−�l
2
	 for the autocorrelations within layer l.

Those factors are plotted in Fig. 4. At �l=0 and �l=0,
i.e., all magnetizations along the field and no fluctuation,
Sll

M =Cll
M =0. When the amplitude of the fluctuations ��l�

around the mean value �l=0 increases, both off-specular
scattering from perpendicular and off-specular scattering
from parallel fluctuations increase, Sll

M increasing faster than
Cll

M. At �l=0, the scattering from perpendicular fluctuations
increases steeply with �l and Cll

M stays equal to zero. The
scattering from fluctuations perpendicular to the applied field
appears in the SF channels and the scattering from parallel
fluctuations in the NSF channels. Therefore, from intensity
comparison between the two types of channels, it is possible
to determine uniquely the �l and �l parameters.

To take into account cross-correlations between two lay-
ers l and l’ one can write, as a simplest model, Sll�

M

=�Sll
MSl�l�

M ·e−�zl−zl��/��
M

, with ��
M taken independent on the pair

of layers considered, and Cll�
M =0. The larger the vertical cor-

relation length ��
M, the stronger the cross-correlations.

E. Scattering at interfaces in the small Q� ·� limit

The first full derivation of the scattering cross section
from the air/substrate random interface within the DWBA
was given by Sinha et al.,47 and has been latter extended to
random interfaces in multilayers.51–53,60 More recently a
cross section for the scattering of soft x rays by magnetically
rough interfaces has been presented.61,62 Here we give the
final result in the small Q� ·� limit,51,53 that we extend to
polarized neutron scattering from interfaces between mag-
netic layers. In the following, we make the particular as-
sumption that the magnetic profile of the interfaces follows
exactly the nuclear profile and that the magnetizations close
to the interfaces are equal to the magnetizations in the bulk
of the layer �i.e., no magnetic roughness�. Note that in gen-
eral interfaces will appear “smoother” for magnetic scatter-
ing as compared to nuclear scattering, since the first is due to
the magnetic induction field, while the later is due to a very
local scattering process at the nuclei.

We assume that the interface heights are Gaussian random
variables of the lateral coordinate and that the interface l on

M sat M sat M sat

M

l
2ξ

Hµ0

φ

x

y

Φl

l

FIG. 3. Model of lateral magnetic correlations. �l, the angle
defining the directions of the magnetization with respect to the ap-
plied magnetic field �0H inside the laterally correlated regions,
varies randomly from one region to another around the mean value
�l following a Gaussian distribution of rms width �l.

FIG. 4. �Color� Spin-spin autocorrelation functions in layer l for
the spin components perpendicular �Sll� and parallel �Cll� to the
applied field �0H as a function of the parameter �l, angle giving
the average directions of the magnetizations in the spin correlated
regions, and the rms amplitude �l of the fluctuations around the
average directions.
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top of layer l fluctuates in height with a rms amplitude that
saturates to a value �l at lateral distances well above a cutoff
length �l

R.47 In the small Q�� approximation, the scattering
cross section can be written in the same way as in Eq. �21�
but with the partial scattering amplitude operators �Eq. �17�	
replaced by the following operator:

F̂l
�� =

1

4�
��

e−1/2�qfil
�����l�

2
�1 + � · �̂bl�F̂l�Q���1 + � · �̂bl� .

�23�

In this equation, the Laue functions in Eq. �18�, resulting
from the z integration of residual potentials that do not de-
pend on z within a layer, are replaced by Debye-Waller fac-
tors, resulting from the integration of potential differences
with z extensions fluctuating randomly with the lateral coor-
dinate around the average heights of the interfaces

F̂l�Q�� = ���l
N1̂ + �l

M�̂bl�� − ��l−1
N 1̂ + �l−1

M �̂bl−1��	Fl
N�Q�� ,

�24�

where Fl
N�Q�� is the lateral Fourier transform of the height of

interface l and bl�=bl− �bl ·Q̂� ·Q̂. Note that the contrasts in
both nuclear and magnetic scattering length densities at the
interface enter.

For the computation of the scattering cross section in Eq.
�21�, we are left in calculating the product Fl

N�Q�� ·Fl�
N*�Q��,

which is equal to the Fourier transform of the height-height
auto- �l= l�� or cross- �l� l�� correlation functions between
interfaces l and l’. Assuming self-affine rough interfaces with
a cutoff47 length �l

R, root mean squared �rms� amplitudes �l,
and the same Hurst parameter h=0.5 for all interfaces, the
Fourier transforms of the height-height correlation functions
can be written, after integration over Qy:


Fl
N · Fl�

N*�y�Qx�

=
N0 · Scoh · Cll�

R

2
· 
 �l

R

1 + �Qx · �l
R�2 +

�l�
R

1 + �Qx · �l�
R �2�

�25�

with Cll�
R =�l ·�l� ·e−�zl−zl��/��

R
where ��

R , taken independent on
the pair of interfaces considered, is a measure of the confor-
mity of the interfaces.63 When the vertical correlation length
��

R is large with respect to the distance between two inter-
faces, the lateral height profiles of those interfaces evolve
approximately in phase. The Fourier transforms of the
height-height correlation functions have a Lorentzian shape
in Qx.

III. SAMPLE

Polarizing supermirrors are commonly used for the polar-
ization of cold or thermal neutron beams. They consist of a
series of alternating ferromagnetic and nonmagnetic layers
with a gradient in the layer thickness. In a remanent polariz-
ing supermirror, a macroscopic uniaxial anisotropy allows
one to keep a remanent magnetization after the magnetizing

field is switched off or even slightly reversed. In this state,
the supermirror reflects neutrons with the spin opposite to the
guide field �i.e., “−” neutrons�. This feature can be used to
build a polarized neutron instrument without the use of a
spin flipper.34

The present sample under investigation, commercially
available from SwissNeutronics,34 contains 100 Fe50Co48V2
layers separated by 100 TiNx layers. A Schematic of the
structure is represented in Fig. 5. Fe50Co48V2 is chosen for
its large scattering length density for “+” neutrons, �FeCoV

+

=�FeCoV
N +�FeCoV

M , leading to a relatively large critical angle of
total reflection ��c

+=1.8 mrad /Å�, whereas it does not total
reflect “−” neutrons, because �FeCoV

− =�FeCoV
N −�FeCoV

M �0. In
order to increase the angular range of good reflectivity above
this critical angle, up to m=2.5 times the critical angle of Ni,
the FeCoV /TiN bilayer thickness is increased continuously
from the substrate to the top, nominally from 11.6 to
82.6 nm. The variation is not linear. The thickness increases
very slowly for the first 70 bilayersand then steeper for the
remaining bilayers.64 An important point for the later discus-
sion is to notice that, although the FeCoV layers are all
thicker than their neighboring TiNx, the thicknesses of the
first 70 FeCoV layers differ by less than 15% of the thick-
nesses of their first nearest neighbor TiNx layers, i.e., the first
70 FeCoV /TiNx bilayers consist of layers having almost the
same thickness.

FIG. 5. Sample consists of 100 Fe50Co48V2 layers separated by
100 TiNx layers. The Fe50Co48V2 /TiNx bilayer thickness increases
continuously from the bottom to the top of the structure. See Sec.
III for details. The bottommost ferromagnetic layers have lower
coercivities than the topmost. Below a certain grain size, exchange
coupling leads to the formation of regions larger than the grains in
which the magnetization is approximately uniform.
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The content of nitrogen in TiNx was adjusted by tuning
the partial pressure of N2 during the reactive sputtering pro-
cess such that the contrast �FeCoV

− −�TiNx

N vanishes. In order to
absorb the “−” neutrons that are transmitted by the device, a
45 nm thick Gd layer is inserted between the supermirror
structure and the borated glass substrate.

The supermirror was produced using sputtering conditions
leading to an anisotropic stress distribution within the plane
of the layers.34 Due to magnetoelastic coupling, a well de-
fined easy axis of magnetization is induced, coherent over
the whole sample surface, providing an increased remanence.
The remanence is such that the magnetization distribution is
almost not affected by switching off the magnetizing field, or
even by slightly reversing it. We will show later in this ar-
ticle that this is not exactly true.

Structural and magnetic investigations have already been
performed on such supermirrors or on multilayers composed
of the same materials and substrate. From macroscopic mag-
netometry and polarized neutron reflectometry, it has been
shown that the magnetic coercivity of the FeCoV layers in-
creases with thickness.34,39 At the same time, an increase of
the grain size with the layer thickness was reported,39 leading
to a correlation between grain size and amplitude of the co-
ercive field. This correlation was explained using the random
anisotropy model.35 The same FeCoV ferromagnet is also
implemented in multilayer structures for applications in
spintronics.37,38,65–68

In Sec. V A, a detailed investigation of the remagnetiza-
tion process by polarized neutron reflectivity with polariza-
tion analysis is presented, confirming the previous investiga-
tions. A first contribution to this study has already been
published elsewhere.69 In Sec. V B, a depth-resolved inves-
tigation of the in-plane structural and magnetic correlations
is performed by off-specular scattering with polarization
analysis, giving more detailed information on the mechanism
of coercivity in this system.

IV. EXPERIMENT

A. Reflectometer

Reflectivity and off-specular scattering with polarization
analysis were measured on the HADAS reflectometer located
at the FRJ-2 reactor in Jülich.70 The wavelength was �
=0.452 nm with a wavelength spread of 1.1% �FWHM�. In
order to define with good enough precision the angle of in-
cidence �i, the incident beam was collimated by two slits
parallel to the y axis of Fig. 1, 1 mm in width, located 1450
and 470 mm before the 60 mm wide sample. The data were
collected on a 80 mm diameter 2D position sensitive detector
�PSD� and integrated over the angle � in Fig. 1.

After interaction with the sample, the neutrons are de-
tected on the PSD, permitting the simultaneous detection of
the reflected and off-specular scattered neutrons over a whole
range ��53 mrad� of � f angles. In order to obtain the ��i ,� f�
maps presented in this article, two scans were performed,
scanning �i from 0 to 70 mrad at two fixed values of � f for
the detector center, namely 19.2 and 59.3 mrad.

The polarization of the neutrons is obtained with the same
supermirror as the one presented in the previous section. A

beam of polarized neutrons in the �+ � or �−� state can there-
fore be obtained without the use of a spin-flipper. After in-
teraction with the sample, the projection of the neutron spin
on the quantization axis can be reversed by the use of a
Mezei-type spin flipper. The unique feature of this instru-
ment lies in its polarization analyzer.71 It consists of a stack
of magnetically saturated polarizing supermirrors almost par-
allel to the scattering plane and set up as a divergent colli-
mator, allowing the simultaneous analysis of all the neutrons
coming from an up to 15 mm high illuminated region of the
sample and hitting the PSD. At each magnetic field, the in-
tensities corresponding to the four spin-flip and non-spin-flip
cross-sections �I+−, I−+, I++ and I−−� for reflectivity and off-
specular scattering are acquired. A more detailed description
of this reflectometer can be found on our website.72 By now
the instrument has been transferred to the FRM-II reactor,
where it will be operated in a slightly modified version as
“TREFF” reflectometer.

B. Scattering geometry

To a given pair of �i and � f angles corresponds the com-
ponents of the momentum transfer along and perpendicular
to the sample surface �respectively x and z directions
in Fig. 1� that are given by Qx=k · �cos�� f�−cos��i�	
�k · ��i−� f� · ��i+� f� /2 and Q�=k · �sin�� f�+sin��i�	
�k · ��i+� f�, respectively. The approximations are per-
formed taking into account that the angles �i and � f are
small. In a ��i ,� f� map, the intensities along the main diag-
onal ��i=� f� represent a scan along the Q� axis at Qx=0,
which is called specular scan. Intensities recorded along a
second diagonal, i.e., varying ��i−� f� at constant ��i+� f�,
are a rocking scan. Thus rocking scans are nearly Qx scans at
constant Q� and lateral correlations are probed. We have
chosen to represent the off-specular data in ��i ,� f� maps
rather than �Qx ,Q�� maps, because the intensities are
strongly influenced by the amplitudes of the reflection and
transmission coefficients that are, themselves, solely deter-
mined by the angles.

C. Data analysis

The measurements of reflectivity and off-specular scatter-
ing shown in the next section at four different magnetic fields
are representative of the full set of data measured at 18 fields
along the remagnetization of the sample. They are presented
as they were measured, i.e., no correction was applied. The
effects of limited polarization efficiencies, illumination and
resolution convolution are properly taken into account in the
simulations.

The polarization efficiencies appearing in the density ma-
trices in Eqs. �5� and �21� are determined from the specular
intensities by adjusting the values of Pi and P f in order to
reproduce the spin-flip intensities. As will be emphasized in
the next subsection, we assume that the mean magnetizations
are all parallel or antiparallel to the guiding field of the neu-
trons and that, therefore, all the observed spin-flip specular
signal is due to polarization inefficiencies. Let Pi and Pf be
the coordinates of Pi and P f along the quantization axis. We
assume the same absolute values of Pi and Pf for both spin
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polarization, i.e., the polarizer efficiency is the same for spin
“+” and spin “−” neutrons, and the spin-flipper in front of the
analyzer does not affect the beam polarization. The formula
for the measured reflectivity R in Eq. �5� can therefore be
developed as a function of the sample’s non-spin-flip reflec-
tivities R++ and R−− in the following way:

R =
1

4
��1 + Pi� · �1 + Pf� · R++ + �1 − Pi� · �1 − Pf� · R−−	 .

�26�

In the remanent state ��0H=1 mT� the sample produces
much stronger R−− reflectivity than R++ over the whole range
of angles of incidence �i �cf. Fig. 6�a�	. In that case, the
measured spin-flip reflectivities can be written:

R+− =
1

4
�1 − �Pi�� · �1 + �Pf�� · R−−,

R−+ =
1

4
�1 + �Pi�� · �1 − �Pf�� · R−−. �27�

In the same way, at saturation ��0H=25 mT� the sample
produces much stronger R++ reflectivity than R−− and the
measured spin-flip reflectivities are

R+− =
1

4
�1 + �Pi�� · �1 − �Pf�� · R++,

R−+ =
1

4
�1 − �Pi�� · �1 + �Pf�� · R++. �28�

A quick inspection of those formulas shows that, if �Pi �
� �Pf�, R+−�R−+ in the remanent state and that R+−�R−+
at saturation. This is effectively what is observed in Figs.
6�a� and 6�d�. At the two other fields, R+−�R−+ in the an-
gular ranges for which R++�R−− and R+−�R−+ in the an-
gular ranges for which R−−�R++, showing that the relation
�Pi � � �Pf� holds at all applied fields. Adjusting the values of
�Pi� and �Pf� for the simulated spin-flip reflectivities to meet
the data lead to �Pi � =0.85, 0.91, 0.91 and 0.93 at �0H=1.0,
3.8, 5.6, and 25 mT, respectively, and �Pf � =0.945 at all ap-
plied fields except at �0H=5.6 mT where it is equal to 0.93.
There is no reason for the analyzer efficiency to be smaller at
this intermediate field value. This comes from a reduced ef-
ficiency of the spin-flipper to a value of 0.98, due to the fact
that the stray fields of the electromagnet enter in conflict
with the compensation field in the spin-flipper.

The specular reflectivity data were analyzed according to
the formula in Sec. II B. The reflectivity is proportional to
the rate of incoming neutrons illuminating the surface of the
sample. The illumination effects were determined from ray
tracing calculations. They depend on the opening of the two
slits before the sample, the size of the sample and its incli-
nation angle.73 The neutrons hitting the surface of the sample
do not arrive all with the same angle of incidence �i and the
same wavelength �. These are taken into account assuming a
Gaussian-like resolution in Q�, whose width is determined
by the resolution in wavelength, the divergence of the beam
and the inclination angle of the sample. The simulations were

convoluted by this resolution function. Also, all simulations
were multiplied by a recalibration factor to meet the plateau
of total reflection and a constant background was added.

The off-specular data were analyzed according to the for-
malism presented in Sec. II C. The scattering from magnetic
correlations and interfacial roughness was analyzed using the
statistical models described in Secs. II D and II E, respec-
tively. The differential scattering cross section in Eq. �21�
was then doubly convoluted by Gaussian resolution func-
tions in �i and � f of 2 mrad FWHM.

Three empirical recalibration factors were adjusted to the
data, one for the reflectivity, one for the off-specular scatter-
ing from structural roughness and another one for the mag-
netic scattering from lateral magnetic correlations. This
comes from the fact that the reflectivity is calculated exactly
and that the roughness and magnetic lateral correlation
lengths cannot be determined exactly in this experiment �see
Sec. V B�. Note, however, that the same recalibration factor
was used for the two magnetic scattering cross sections in
Eq. �22�, allowing a precise determination of the parameters
�l and �l describing the amplitudes of the magnetic fluctua-
tions.

A proper scaling between reflectivity and both types of
diffuse scatterings �structural and magnetic� can in principle
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FIG. 6. �Color� Intensities measured along the specular line dur-
ing remagnetization of a remanent polarizing supermirror after hav-
ing saturated it in a field of 0.5 T opposite to the guiding field of the
neutron beam. The points are the measurements and the lines are
fits to the data according to the formula in Sec. II B. For the purpose
of clarity, the spin flip intensities are scaled down by two orders of
magnitude. The magnetizations of the bottommost thinnest FeCoV
layers flip at first along the applied field. At �0H=1.0, 3.8, 5.6, and
25 mT, respectively, 0, 48, 94, and, 100 layer magnetizations have
flipped along the applied field. The other fit parameters are given in
Sec. V A. In �d�, the arrow points at the critical angle of total
reflection of “+” neutrons on an FeCoV surface and the three
dashed lines are positioned at one, two, and three times the critical
angle of good reflection of “+” neutrons by the supermirror.
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be determined if one calculates the reflectivity within the
DWBA and from the knowledge of Scoh= lx · ly, projection on
the sample surface of the coherence volume of the beam
�Sec. II A�, entering in the Fourier transforms of the pair
correlation functions Eqs. �22� and �25�. The specular reflec-
tivity peak has a Gaussian dependence as a function of
Qx whose FWHM �Qx leads to lx��m	=2� /�Qx
=137 / ��i�mrad	� along the specular line as a function of the
angle of incidence �i.

V. MEASUREMENTS AND ANALYSIS

A. Measurements along the specular line

As a first step of our investigation we interpret the data
along the specular line extracted from the whole set of data
shown in the next subsection. This gives access to the later-
ally averaged state of the sample around which the fluctua-
tions will be introduced in order to reproduce the off-
specular intensities in the next subsection.

In Fig. 6 the four spin channels of polarized neutron re-
flectivity with polarization analysis are presented at four rep-
resentative fields along the remagnetization process of the
sample after having saturated it in a field of −0.5 T. The lines
are fits to the data according to Eq. �5� taking into account
illumination and resolution effects as described in the pre-
ceding subsection.

At �0H=1.0 mT, the sample is in the remanent state, i.e.,
all the magnetizations inside the FeCoV layers are oriented
antiparallel to the applied field: The R−− intensities are high
and the R++ intensities are low. At 25 mT, the sample is in a
saturated state, with all the magnetizations oriented along the
applied field, leading to high R++ intensities and low R−−.
Note also in the majority channels �i.e., R−− in the remanent
state and R++ in the saturated one� the sharp drops of the
intensities not only at the effective critical angle of the su-
permirror but also at three times the effective critical angle.
No intensity drop is present at two times this angle. This
comes from the fact that in a big amount of all the bilayers
the FeCoV thicknesses are equal to the TiN ones �cf. second
paragraph of Sec. III� and an extinction rule forbids all even
order Bragg peaks if the magnetic potential is spatially uni-
form inside the FeCoV layers. This extinction of even order
peaks is expected due to the fact that each bilayer contains
two interfaces whose reflections are phase shifted by a factor
of �. Such symmetric superlattices are sometimes used in
polarized neutron reflectivity when the interface magnetic
structure has to be probed �see, e.g., Ref. 18�.

The magnetization reversal does not happen via a single
flip of all the layers at the same coercive field: at �0H=3.8
and 5.6 mT angular ranges of high R++ and high R−− coex-
ist. Inside the plateau of good reflection, as the field is in-
creased, the higher angle part of the �−−� channel gets
strongly reduced and is replaced by high �++ � reflectivity.
This shows that the thinnest FeCoV layers have lower coer-
civities than the thicker ones.34 From the fits we deduce that,
out of the 100 FeCoV layer magnetizations, 48 of them have
flipped along the field at 3.8 mT and 94 at 5.6 mT. The num-
ber N of flipped FeCoV magnetizations as a function of the
applied field �0H and the deduced coercivity HC as a func-

tion of FeCoV layer thickness tFeCoV are depicted in Fig. 7.
Careful analysis of the data led to further structural and

magnetic information. The measured spin flip intensities are
reproduced by only taking into account the polarizing and
flipping inefficiencies given in Sec. IV C. No spin-flip reflec-
tivity is induced by the sample. We therefore conclude that
all the net magnetizations lay either parallel or antiparallel to
the applied field. The remagnetization process does not hap-
pen via in-plane rotation of the magnetizations.

The intensities beyond the plateau of total reflection show
a gradual decay as a function of the angle of incidence, that
we interpret by the presence of interfacial roughness. This
decay is, however, faster at smaller angles than at higher,
with even an inversion of the slope at angles between 55 and
60 mrad �see R−− at �0H=1.0 mT, and R++ at the three
other fields of Fig. 6�. We reproduce this effect assuming
smaller roughness amplitude of the bottommost interfaces
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FIG. 7. �a� As the field is reversed after magnetic saturation of
the sample, the magnetization reversal of the FeCoV layers pro-
ceeds sequentially from the bottom to the top. The number N of
reversed FeCoV layer magnetizations is displayed as a function of
the applied field. �b� Circles: Coercive field HC of FeCoV layer
magnetizations deduced from �a� as a function of the layer thick-
ness. Squares: Grain size D as a function of layer thickness as
deduced from x-ray diffraction in Ref. 39. Solid line: Fit to the data
leading to the relation D� �tFeCoV−2.8�0.26�0.2. Inset: Points: Coer-
cive field as a function of grain size deduced from the two other
curves. Solid line: Fit to the data leading to HC=0.6+7.1�D3.
Dashed line: Simulation HC=7.1�D3.
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�0.34 nm rms� than the topmost �1.26 nm rms�, with a power
law variation as a function of the number of interfaces
�counted from the substrate’s interface� with an exponent
equal to 0.278. A linear variation does not reproduce very
well the upturn of the intensities at the biggest angles. A
power law with exponent smaller than one provides a faster
increase in roughness amplitudes for the bottommost and a
slower one for the topmost layers than a linear law. Similar
behavior, i.e., a faster increase of roughness amplitudes at the
bottommost interfaces than at the topmost, was reported in
FeCoV /TiZr supermirrors.74

The relatively high intensities around 4 mrad in the mi-
nority channels �i.e., R++ channel in the remanent state and
R−− channel in the saturated state� are due to the substrate
that introduces a potential mismatch with the TiN layer. The
Gd layer between the supermirror structure and the substrate
reduces the importance of this peak and introduces the oscil-
lations seen in those channels.

At the exception of the minority channels in the 20 to
40 mrad range �see next paragraph�, all simulated intensities
overestimate the measured data. A good matching is obtained
by reducing by 13% all atomic densities with respect to their
nominal values. In Ref. 39, x-ray diffraction shows that the
intake of nitrogen atoms shifts the �110	 texture peak of
FeCoV to lower angles �from 45° to 42.5°�, indicating a
larger lattice parameter �by 6%� and lower atomic density
�by 16%�, in quantitative agreement with our result.

Assuming perfect matching between the “−” neutron in-
teraction potential with FeCoV and the neutron interaction
potential with TiN leads systematically to a strong underes-
timation of the intensities in the minority channels between
20 and 40 mrad. Moreover, the presence of a sharp intensity
drop in those channels at 40 mrad is, even qualitatively, not
reproduced by the simulations. Layer-uniform modifications
or even layer-to-layer variations of the nuclear or magnetic
scattering length densities do not improve the fit. Note that
the angular range under consideration corresponds to the one
for second order Bragg peaks of the supermirror structure. As
pointed out in the third paragraph of this subsection, even-
order Bragg peaks are forbidden in a symmetric multilayer if
the magnetic potential is spatially uniform inside the FeCoV
layers. Breaking this assumption by replacing in the simula-
tions the top and bottom parts of the FeCoV layers by layers
of same nuclear scattering length density than FeCoV but
zero magnetic scattering length density �i.e., “magnetically
dead” layers� results in a drastic improvement of the fit. A
perfect agreement between data and simulation is obtained
by assuming different thicknesses of the top and bottom dead
layers, i.e., 0.15 nm and 0.4 nm. The fit does not allow us to
distinguish which of the top and bottom dead layers are
thicker than the others. Those values are in good agreement
with the value of 0.21 nm found by Senthil-Kumar et al.39 in
the same system from saturation magnetization measure-
ments.

At this stage of the fit, in the remanent state, the R++
intensity below the effective critical angle of the supermirror
��20 mrad� and above 10 mrad is still underestimated by
the simulations. The three other channels and all the channels
at the other fields are well reproduced. An increase of the
simulated R++ at remanence that does not affect the simula-

tion at the other fields can be obtained by increasing the
contrast between FeCoV and TiN only when FeCoV layers
are involved with magnetizations that have not yet reversed
along the field. This is obtained by assuming a 10% reduc-
tion of the net magnetization in the FeCoV layers that have
not yet flipped. This is a first hint that, on a length scale
smaller than the lateral coherence length of the beam, some
magnetic fluctuations exist in the layers that have not yet
flipped along the applied field.

The lines in Fig. 6 represent the simulations at this final
stage of the fit.

B. Off-specular scattering

The full set of data, i.e., specular reflectivity plus off-
specular scattering, measured at the four fields considered
above, is shown in Fig. 8. Along the main diagonals, one
recognizes the specular intensities depicted in Fig. 6.

As a help to understand the measured data, we also cal-
culate the probability densities W+ and W− to find spin up
and spin down neutrons in the multilayer stack as a function
of the angle of incidence �i. They are obtained by projecting
the ket, solution of the Schrödinger equation for the average
potential, on the bras representing spin up and spin down
neutrons respectively. Using the propagator in layer l intro-
duced in Eq. �2�, they can be calculated using the following
formulas:

W+�z,�i� = �
l

�
+ �Ŝil�z�� + ��2,

W−�z,�i� = �
l

�
− �Ŝil�z�� − ��2 �29�

and are represented in Fig. 9 for the 4 laterally averaged
states determined in the previous subsection.

FIG. 8. �Color� Spin resolved reflectivity and off-specular scat-
tering measured after saturation of the sample in a negative field at
four applied fields �a� �0H=1 mT, �b� 3.8 mT, �c� 5.6 mT, and �d�
25 mT.
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In Fig. 10, the simulation of the data is presented with the
parameters given below. It is the sum of the simulations of
specular reflectivity, of off-specular scattering from interfa-
cial roughness correlations, from lateral correlations of the
magnetic fluctuations perpendicular to the applied field, and
from lateral correlations of the magnetic fluctuations parallel
to �0H �cf. Sec. II�. The three simulations of off-specular
scattering within the DWBA are presented separately in Figs.
11 to 13, respectively. Illumination and resolution effects are
also taken into account as described in Sec. IV C.

1. Scattering from interfacial roughness correlations

In the remanent state, strong off-specular scattering is
seen in the I−− channel for which a strong contrast between
the layers exist. As the field is increased and the bottommost
layers begin to flip along the applied field, the disappearance
�appearance� of specular intensity in the I−− �I++� channel is
accompanied by the disappearance �appearance� of the scat-
tering intensity in the same channel. Thus, the intensities of
scattering depend, like the specular reflectivities, on the con-
trast between neighboring FeCoV and Ti:N layers. They are
therefore due to structural roughness at the interfaces. The
scattering from interfaces with FeCoV layers with magneti-
zations along the field is mainly seen in the I++ channel, and
the scattering from those with magnetizations antiparallel the
field is seen in the I−− channel.

At 3.8 mT in the I++ channel, the scattering from rough-
ness is concentrated around a line perpendicular to the specu-
lar line and crossing it at around 20 mrad where the specular

FIG. 9. �Color� Probability densities to find “+” �W+� and “−”
�W−� neutrons in the supermirror calculated as a function of depth z
in the multilayer and angle of incidence �i. The calculations are
performed for the four average structural and magnetic configura-
tions deduced from the specular reflectivity analysis at the four
fields of Fig. 8. The two densities are plotted on the same arbitrary
unit. The three dashed vertical lines in each picture represent the
interface with air �z=0�, the interface between regions of nonflipped
and flipped layer magnetizations, and the interface with the sub-
strate. The red �green� arrows denote the regions inside which the
magnetizations lay opposite �along� the applied magnetic field �0H.

FIG. 10. �Color� Simulation of the reflectivity and off-specular
scattering data of Fig. 8 in the framework of the distorted wave
Born approximation �DWBA�. The simulation of scattering results
from the sum of the scattering from interfacial roughness �Fig. 11�,
of the one from fluctuations of the magnetizations perpendicular to
the applied field �Fig. 12�, and from parallel magnetic fluctuations
�Fig. 13�.

FIG. 11. �Color� Part of the DWBA simulation of off-specular
scattering originating from interfacial roughness and calculated us-
ing the structure factor in Eq. �25�. For this simulation we took the
rms roughness amplitudes as deduced from the fit of the specular
reflectivity, the same lateral correlation length �l

R for all interfaces l
��l

R�1 �m� and ��
R very large with respect to the thickness of the

entire multilayer stack. Note that scattering from interfacial rough-
ness does not produce any spin-flip signal. The latter is solely due to
transverse magnetic fluctuations.
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intensity is at its maximum. This so-called “Bragg sheet”
shows that the in-plane roughness profile is vertically corre-
lated, i.e., that it replicates itself from interface to interface
���

M in Cll�
R of Eq. �25� large with respect to the entire

multilayer thickness	. Note also the “bending” of the Bragg
sheet at �i and � f around 8 mrad, equal to the critical angle
of total reflection for “+” neutrons of FeCoV. This can be
explained by considering the probability density to find a “+
neutron” in the layers whose magnetizations lie along the
applied field �region labeled by a green arrow in Fig. 9�b�	:
Below this angle, no “+ neutron” can be observed. This is
due to the fact that, below this critical angle, the “� neutron”
wave is evanescent. This effect is even more dramatic for the
Bragg sheet in I++ at 5.6 mT. Here the Bragg sheet is com-
pletely bent and lies parallel to the �i or � f axis depending
on �i larger or smaller than � f, respectively.

Almost all of the rest of the non-spin-flip off-specular data
also arises from scattering by vertically correlated roughness,
as confirmed in the simulations of Figs. 10 and 11. Although
those intensities do not appear at �i and � f values close to
total external reflection, here also they do not have the usual
Bragg-sheet form, i.e., they are not distributed in angular
ranges parallel to a line of constant �i+� f value. This can be
explained by considering again the probability densities. For
example, let us take the I−− scattering in the remanent state.
At remanence W− is prominent in the �= 8-to-22 mrad an-
gular range. The sample is probed deeper by “−” neutrons as
the angle of incidence is increased. At a fixed angle of inci-
dence �i, the interface between the neutron probed and non-
probed regions is given by the FeCoV /TI:N bilayer thick-
ness t fulfilling the Bragg condition for reflection
t=n ·� /2� to first order �n=1�. Another range of prominent
illumination lies from 8 to 60 mrad with the same interface
at three times the former angle and fulfilling the Bragg con-
dition to third order �n=3�. As pointed out in the former
subsection, the Bragg condition to even order is not illumi-
nated. Off-specular scattering should therefore be observable
at �i and � f lying in one of those ranges. As the “−” neutrons
illuminate more and more interfaces as the angle of inci-
dence is increased, the related off-specular scattering inten-
sity should also increase with �i and � f. This is what is
observed in Fig. 8�a� and simulated in Figs. 10�a� and 11�a�.
The same argument holds for the explanation for the scatter-
ing in the I−− channel at 3.8 mT �Fig. 8�b�	 and in the rest of
the scattering in the I++ channels at 3.8 and 5.6 �Fig. 8�c�	
mT.

From the above discussion one can conclude that the
shape of the off-specular scattering from interfacial rough-
ness and its intensity distribution are solely determined by
dynamical effects. The intensity distributions are well repro-
duced by the sequence of roughness amplitudes deduced in
the preceding subsection from the specular reflectivity but
are completely independent of the chosen value for the lat-
eral correlation �l

R �taken equal for all interfaces l� in Eq.
�25�, provided that it is much smaller than, say, one �m. It is
therefore not possible to determine the lateral correlation
length in the present experimental geometry.

Note also that the data are very well reproduced by the
simulations within the small Q�� approximation of the
DWBA. As a matter of fact, the bottom- �top-� most inter-

faces contributing to the scattering at the biggest �smallest�
Q� values are the ones of smallest �biggest� roughness am-
plitudes so that the relation Q� ·��1 is always fulfilled.

2. Scattering from lateral magnetic correlations

A strong spin-flip off-specular scattering is also observed
�cf. I−+ and I+− channels in Fig. 8�. It originates from fluc-
tuations of the component of the magnetization perpendicu-
lar to the quantization axis of the neutrons, i.e., perpendicular
to the applied magnetic field �0H.

Note that, although spin-flip intensity is observed off-
specular, such intensity is not observed along the specular
direction �apart from the ones due to the inefficiencies of the
spin polarizing and analyzing devices, see Sec. IV C�. As
stated in Sec. II A, specular reflectivity originates from the
depth variation of the laterally averaged neutron-matter in-
teraction and off-specular scattering originates from correla-
tions of the lateral fluctuations around this mean value. In
our case, the laterally averaged magnetic potential consists of
the interaction with layer magnetizations being either parallel
or antiparallel to the guide field. Therefore, specular reflec-
tivity is seen in the non-spin-flip channels only.

The off-specular scattering does not have the tendency to
arrange along Bragg sheets. It is therefore due to vertically
uncorrelated magnetic fluctuations.

In the I−+ �I+−� channel, neutrons are incident on the
sample surface under the angle �i and spin “−” �“+”� and are
detected under the angle � f with spin “+” �“−”�. The �i and
� f values at which the spin-flip off-specular scattering is
prominent correspond to �i values at which the reflectivities
for “−” and “+” neutrons, respectively, are prominent. This
explains the big asymmetry with respect to the specular line
of the spin-flip signals. For example, at remanence the I−+
�I+−� signal stands mainly below �above� the specular line
because the “−” reflectivity is much more prominent than the
“+” reflectivity. This asymmetry is inverted at 25 mT, the
field at which all the magnetizations have flipped along the
field inducing strong “+” and low “−” reflectivities.

At the three smallest fields, the �i and � f values at which
the spin-flip off-specular scattering is prominent, correspond
in Fig. 9 almost exclusively to angles where the probabilities
W− and W+ respectively are prominent in the layers whose
magnetizations point antiparallel the applied field. Almost all
the spin-flip off-specular scattering could be reproduced by
the DWBA simulations introducing fluctuations only in the
layers that have not yet flipped along the field.

The presence of spin-flip off-specular scattering at 25 mT
shows that magnetic fluctuations are also present when the
magnetizations have flipped along the applied magnetic field.
Magnetic fluctuations are also present in the flipped magne-
tizations at the three smallest fields. To show this, let us
concentrate, for example, on the I−+ channel. This cannot be
shown from the intensity variation along the �i axis, as W− in
the layers along the field is very weak. W+ in the layers with
magnetizations along the field is maximized in narrow angu-
lar ranges around 9 and 20 mrad at �0H=3.8 and 5.6 mT.
The weak spin flip scattering at � f lying in those two angular
ranges at those two fields can therefore be reproduced only
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assuming that magnetic fluctuations are present also in the
layers that have flipped along the field.

A good reproduction of the spin-flip scattering at the three
smallest fields �Figs. 10 and 12� was obtained in the follow-
ing way. To take into account the absence of cross correla-
tions between different layers �i.e., Sll�

M =0 when l� l� in the
first Fourier transform of pair correlation function in Eq.
�22�	 we took ��

M =0. The extension of the scattering along
the Qx direction was well reproduced by taking the same
lateral correlation length �l

M = �0.2�0.05� �m in all layers l.
In order to remain consistent with the specular reflectivity
analysis �Sec. V A� in which a 10% reduction of the net
magnetization with respect to the saturation magnetization is
found in the layers with magnetizations that have not yet
flipped along the field, we take �l=155° in the autocorrela-
tion functions Sll

M. For the magnetizations that have already
flipped we take �l=0. Then the overall recalibration factor
for magnetic scattering �discussed at the end of Sec. IV C�
was adjusted in order to reproduce the measured intensities.

In this way, it was not possible to reproduce the spin-flip
intensity at 25 mT, as it was found from the specular reflec-
tivity analysis that the average net magnetization in the lay-
ers with magnetizations along the applied field are equal to
the saturation magnetization. Moreover, it was not possible
to reproduce fully the non-spin-flip off-specular scattering at
�i and � f angles below 20 mrad assuming only off-specular
scattering from roughness. Those missing scattering intensi-

ties were obtained assuming fluctuations of the component of
the magnetizations parallel to the applied field. In the model
of lateral magnetic correlations depicted in Sec. II D, this can
be obtained by putting some lateral randomness in the orien-
tation of the magnetization from spin-correlated region to
spin-correlated region ��l�0 in Cll and Sll of Eq. �22�	. The
introduction of this randomness leads to a nonvanishing
structure factor for longitudinal magnetic fluctuation. The in-
tensities were well reproduced by assuming the rms ampli-
tudes �l independent of the layer l and equal to �35�5�° at
remanence, �40�5�° at �0H=3.8 and 5.6 mT, and �15�5�°
at 25 mT �Figs. 10 and 13�.

VI. DISCUSSION

We start here by summarizing the structural and magnetic
model of the sample and its magnetic behavior during the
magnetization reversal process as obtained from the analysis
of the reflectivity and off-specular data. The interfaces show
increasing rms roughness amplitudes from the bottommost to
the topmost interface, ranging from 0.34 to 1.26 nm. Strong
cross-correlations of the roughness profiles are deduced. Due
to the limited Qx range accessible with the present instru-
mental geometry, we are not able to access to their lateral
correlation length.

The top and the bottom parts of each of the FeCoV layers
show vanishing magnetization. Those “dead layers” are 0.15
and 0.4 nm thick. It is not possible to distinguish which of
the bottom and top “dead layers” is the thickest.

As the external magnetic field �0H is reversed after satu-
rating the sample, the magnetization reversal proceeds se-

FIG. 13. �Color� Part of the DWBA simulation of off-specular
scattering originating from the fluctuations of the layer magnetiza-
tions parallel to the applied field �0H. Those fluctuations produce
off-specular scattering in the non-spin-flip channels. The same pa-
rameters as in Fig. 12 were used. Again the nonvanishing intensities
in the spin-flip channel arise from taking into account the nonper-
fect efficiencies of the polarizing and analyzing devices.

FIG. 12. �Color� Part of the DWBA simulation of off-specular
scattering originating from the fluctuations of the layer magnetiza-
tions perpendicular to the applied field �0H. Those fluctuations
produce off-specular scattering in the spin-flip channels. This cal-
culation was performed using the first structure factor in Eq. �22�
with the following parameters: �l

M =0.2 �m the same for all layers l
and all fields, �l=155° for the nonreversed layer magnetizations
and 0° for the flipped ones for all fields, �l=35° for all layers at
remanence, �l=40° at �0H=3.8 and 5.6 mT, and �l=15° at 25 mT.
Note that the nonzero intensities in the non-spin-flip channels arise
from taking into account in the density matrices in Eq. �21� the
nonperfect efficiencies of the polarizer and analyzer devices.
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quentially from the bottommost and thinnest to the topmost
and thickest FeCoV layer. In Fig. 7�a� the number of re-
versed layer magnetization is depicted as a function of �0H.
At all the fields of measurement, the magnetizations are
found either parallel or antiparallel to �0H. No component of
the net magnetizations perpendicular to �0H was detected.
The net magnetizations as deduced from the specular reflec-
tivity measurements are saturated when they are aligned
along the field and are reduced by 10% with respect to their
saturation value when they are aligned antiparallel the field.
This is the first hint that, at least in the layers that have not
reversed their magnetization, lateral fluctuations of the mag-
netizations exist, i.e., that �l�0.

Lateral correlations of the spin misalignment are present
inside the magnetic layers, with an average correlation length
�l

M equal to 0.2�0.05 �m. The off-specular scattering with
polarization analysis allowed us to separate the fluctuations
into transverse and longitudinal ones, i.e., into fluctuations of
the component of the magnetization perpendicular and par-
allel to the applied field direction, respectively. Those two
types of fluctuations are interpreted in the following way:
From one laterally correlated region to the other, two types
of spin misalignment coexist in the nonreversed layers, i.e., a
nonrandom one �given by the parameter �l=155°� onto
which a Gaussian random fluctuation of the misalignment is
superimposed with rms width �l. In the reversed layers only
the random fluctuations are present. Both types of misalign-
ments are not cross-correlated, i.e., they do not correlate
from ferromagnetic layer to ferromagnetic layer, as can be
expected in a layered system without magnetic coupling. A
sketch of the magnetic microstructure of the sample is given
in Fig. 14.

A. Coercivity

The magnetization reversal model as described above,
i.e., an increase of the coercive field as a function of the
FeCoV layer thickness, can be understood from the nano-
crystalline nature of the layers. Senthil-Kumar et al.39 de-
duced the grain size in FeCoV layers from the �200� peaks of
bcc FeCoV in FeCoV /TiNx multilayers of equal
FeCoV /TiNx bilayer thicknesses. The dependence of the
grain size D on FeCoV thickness tFeCoV has been deduced
�Fig. 4�b� of Ref. 39	 and is reported in Fig. 7�b�. In the same
plot, we represent the variation of the coercive field HC as a

function of tFeCoV deduced from Fig. 7�a�. From those two
plots, it is possible to deduce the variation of HC as a func-
tion of grain size �inset of Fig. 7�b�	. The coercive field HC
increases steeply with grain size D.

A steep increase of the coercive field as a function of
grain size is a general feature of soft magnetic nanocrystal-
line alloys35,75,76 and can be explained in the framework of
the random anisotropy model originally developed for amor-
phous ferromagnets.77 The low coercive field in nanocrystal-
line alloys is the result of the competition between uniaxial
anisotropy of strength K1 varying randomly from grain to
grain and exchange coupling A that tends to align the mag-
netization of neighboring grains along a common direction.
When the grains are big enough, domain walls of thickness
of the order of lW=�A /K1 can form at the interface between
grains and the magnetizations tend to follow the random an-
isotropy. Below a grain size D of the order of lW, D is so
small that the idea of a magnetization transition layer at the
grain boundaries loses significance. When D� lW, exchange
coupling leads to the formation of regions of size Deff�D
inside which the magnetization is approximately uniform
�see bottom part of Fig. 5�. Each region is characterized by
an anisotropy Keff�K1, varying at random from region to
region. Consequently one has Deff��A /Keff because this is
the minimum length over which one can have magnetization
nonuniformities for the given anisotropyKeff. Keff represents
the effective anisotropy of a region uniformly magnetized
and containing a large number N of grains. Because the grain
orientation is random, on the average we expect no aniso-
tropy at all. However, the actual anisotropy, being the aver-
age of N random contributions of the order of K1, will devi-
ate from zero by an amount of K1 /�N in a random direction.
In our case N is of the order of �Deff /D�3, and consequently
Keff�K1�D /Deff�3/2. From the two above proportionality re-
lations involving Keff we obtain Keff�K1�D / lW�6. The effec-
tive anisotropy decreases abruptly with grain size.

In our system, a uniform uniaxial anisotropy Ku, induced
by the magnetoelastic interactions described in Sec. III, su-
perimposes to the random anisotropy so that the effective
anisotropy is now well described by Keff

=�Ku
2+K1

2�D /Deff�3. Here again, Deff is self-consistently re-
lated to the effective anisotropy by Deff��A /Keff. In the gen-
eral case, the effective anisotropy has to be determined by
numerical iterations. In the limiting case of dominating uni-
form anisotropy, the effective anisotropy is given by Keff
�Ku+�D3 where � is a constant.75 Neglecting the magneto-
static interactions, the coercive field HC should also follow
such a law.

Fitting the variation of the coercive field as a function of
the grain size to a law deduced from the random anisotropy
model with uniform uniaxial anisotropy reproduces perfectly
the data �see solid line in the insert of Fig. 7�b�	. Note that
the coercive field deviates from a pure HC�D3 relation for a
grain size D below 10 nm.

B. Spin misalignment

Two types of spin misalignment are deduced, random and
not random, both types being present in the layers whose

Hµ0

FIG. 14. Sketch of the magnetic microstructure of the supermir-
ror at the magnetization reversal. In the topmost layers, the magne-
tizations have not yet reversed along the field and �l�0, while in
the bottommost layers �l=0. Here, for the sake of clarity, the ran-
dom part of the spin misalignment is not sketched.
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magnetization have not yet reversed along the applied field,
only the random one in the layers with reversed magnetiza-
tions. We attribute the average spin misalignment to the ap-
plied field that acts against the uniform anisotropy creating
an energy barrier for the spins to flip along �0H. Due to
exchange interactions, the system reacts by creating neigh-
boring regions of constant magnetizations that make sequen-
tially angles �l and −�l with respect to �0H. On top of that,
the nanostructure of the layers with random orientation of the
grains introduces some randomness in �l characterized by
the rms amplitude �l.

The effective length Deff of the random anisotropy model,
size of the regions inside which the magnetization stays ap-
proximately uniform, can very well be associated to the lat-
eral correlation length of the spin misalignment �l

M intro-
duced in Sec. II D and deduced in Sec. V B 2. Deff can also
be deduced from the random anisotropy model with domi-
nant uniform uniaxial anisotropy, leading to the relation
Deff�D−3/2 for big enough grain size. However, within the
uncertainty of its estimation, we did not deduce any variation
of �l

M with the layer l. Two complementary explanations can
be given. First, the present scattering geometry does not al-
low us to determine precisely lateral correlations lengths
much smaller than 0.5 �m. Second, 70% of the FeCoV lay-
ers, representing 60% of the volume of the multilayer stack,
have thicknesses smaller than 10 nm in which the grains
have sizes below 12 nm �Fig. 7�b�	. For those small grain
sizes, the coercivity, being dominated by the uniform
uniaxial anisotropy, deviates from the D3 law �cf. inset of
Fig. 7�b�	 and the effective correlation length does not vary
too much. Those two arguments explain why the data were
well fitted using an average lateral correlation length of the
spin misalignment equal to �l

M =0.2�0.05 �m inside all lay-
ers l.

VII. CONCLUSIONS AND OUTLOOK

We have investigated the structural and magnetic correla-
tions during the remagnetization process of a gradient nano-
crystalline multilayer with uniform uniaxial anisotropy by
reflectometry and off-specular scattering of neutrons with
polarization analysis. The off-specular data were analyzed
within the distorted wave Born approximation �DWBA� in-
cluding interfacial roughness and lateral correlations of the

spin misalignment. This method of measurement and data
analysis has allowed to dig out unique informations, not at-
tainable by other techniques.

The magnetization reversal proceeds sequentially from
the bottommost and thinnest ferromagnetic layer to the top-
most and thickest one. It is quantitatively explained by the
increase of the grain size with layer thickness within the
random anisotropy model including dominant macroscopic
uniaxial anisotropy. The off-specular measurements with po-
larization analysis allowed us to deduce two types of lateral
spin misalignment, random and not random, the first one due
to the random orientation of the grains, the second one in the
nonreversed layers only and due to the applied magnetic field
acting against the uniaxial anisotropy.

For both magnetic and roughness fluctuations, the corre-
lation lengths could not be precisely determined, due to the
present instrumental geometry. Two methods can be used to
have a precise access to those quantities. A first one would be
to properly scale the off-specular scattering intensities to the
specular reflectivity, as described at the end of Sec. IV C, and
to adjust the values of �l

M and �l
R in Eq. �22� and �25�, re-

spectively, in order to meet the measured intensity levels. A
second method is to use another experimental geometry,
namely the grazing incidence small angle neutron scattering
�GISANS� geometry. In this geometry, the beam at sample
position also arrives with a good collimation along the y axis
of Fig. 1, allowing one to resolve the angle � and therefore
to measure the correlations along the y axis. The component
of the scattering wave vector Q along the y axis can be made
much larger than the one along the x axis allowing one to
probe lateral correlations on a smaller length scale. In that
case, the correlation lengths are accessed by adjusting peak
widths to the measured data. A first report of the GISANS
investigation of the remagnetization process in the system
considered here can be found in Ref. 78, and a full publica-
tion with simulation of the data is in preparation.
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